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ABSTRACT 

Marine Corps Installation and Logistics Command is seeking assistance to 

improve operations within Marine Corps Maintenance Production plants. The problem 

addressed in this thesis deals with production lines—there must be a proper balance of 

parts on hand and inventory costs to ensure optimal production output. This problem 

becomes increasingly difficult to solve as production-line complexity increases and 

overall budget flexibility decreases. As the Marine Corps enters a time of fiscal austerity 

and reduced overseas combat operations, it is critical to optimize its processes so major 

end items are refurbished in the quickest and most cost-effective manner, thereby 

ensuring maximum combat effectiveness.   

This research focuses on developing a proof of concept analytical tool to better 

facilitate order management of repair parts. This tool integrates optimization and discrete-

event simulation. This construct can potentially provide an effective means in improving 

order management decisions. However, the effectiveness of the tool is contingent on 

accurate vehicle condition history, parts order history, and/or future estimated parts 

shipping dates. Information derived from the analysis can be used to make 

recommendations for reorder policy, enable future model development, and improve the 

overall maintenance production process.  
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I. INTRODUCTION 

This thesis develops the framework for an order management tool utilizing 

Discrete Event Simulation (DES) and optimization modeling. The goal is to improve 

order management policy within Marine Depot Maintenance Command (MDMC). This 

chapter provides an introduction of the overall project from which this thesis is derived 

and a background of the MDMC organization. This introduction yields an understanding 

of the existing problem being addressed. In addition, a brief discussion of the current 

techniques in which optimization and simulation are used to improve supply chain and 

inventory management processes is provided. This includes a discussion about previous 

research aimed specifically at improving overall MDMC plant operations.   

A. PROJECT DESCRIPTION AND BACKGROUND 

This section provides details concerning the origins of this thesis project, as 

discussed in the original project report [1]. The section discusses MDMC history, 

mission, and organizational structure.  

1. Plant Utilization MCLC Project Background 

This thesis grew out of an overarching project titled “Plant Utilization at Marine 

Corps Logistics Command” [1], sponsored by the Chief of Naval Operations with a 

program execution date of November 2013 through December 2014. The official 

customer of this project was Marine Corps Logistics Command (MCLC) Installations and 

Logistics. MCLC contacted the Naval Postgraduate School in March of 2013 soliciting 

proposals for research on improving plant capacity. The original proposal submitted by 

Naval Postgraduate School principal investigators included developing “mathematical 

models to guide plant design and utilization at MCLC, including optimal levels of 

physical capacity, equipment, manning and operations” [1]. After meeting with MDMC 

personnel at maintenance production plant Barstow in April 2014, the principal 

investigators determined the primary area of interest to be the management of critical 

repair parts. The difficulties of MDMC to procure critical repair parts results in stock-out 

situations. In addition, budgets are diminished because of unnecessary safety stock levels. 
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The primary focus of the project was to improve order management policy using 

analytical tools. This thesis focuses on the ordering of varying part types or National Item 

Identification Numbers (NIINs) using optimization. The goal is to minimize stock-out 

situations when stock levels are subject to budgetary constraints. As a result, maximum 

production output is facilitated. To this end, the optimization modeling tool named 

Critical Part Inventory Optimization Model (CPIOM) has been developed by the 

principal investigators to address this problem. CPIOM is discussed in more detail within 

Chapter II and Appendix A of this thesis. 

The principal investigators solicited for graduate student participation to expand 

CPIOM utilizing simulation. This thesis focuses on using DES to provide additional 

insight into the problem, thereby allowing further improvement in inventory management 

policy at MDMC. As with the CPIOM, a detailed explanation of DES along with how it 

is merged with CPIOM will be provided in Chapters II and III of this thesis. 

2. MDMC Background 

MDMC is a subordinate organization of MCLC consisting of two maintenance 

production plants located in Barstow, CA, and Albany, GA. Until 2012, the two 

production plants operated independently. With a shrinking Department of Defense 

budget and demand by the Commandant of the Marine Corps to be good stewards of 

national resources, there is a greater need for MDMC to more efficiently and effectively 

reconstitute the Marine Corps with refurbished critical equipment necessary to 

accomplishing the Marines overall mission [2].   

B. THESIS OBJECTIVE AND SCOPE 

This thesis seeks to assist MDMC in improving its capability to maximize 

production mission by utilizing mathematical and analytical methods such as 

optimization modeling and DES. These methods have the potential to empower MDMC 

leaders in make better informed decisions concerning plant operations. The specific 

objective of this thesis is to implement the joint CPIOM and DES construct in order to 

facilitate order management decisions. In particular, the objective of CPIOM is to 

minimize the chance of parts being out of stock (i.e., reducing stock-out situations). The 
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importance of this joint construct is explained in Chapter II, while Chapter III provides 

specifics of how the CPIOM and DES concept is implemented. 

Additional objectives focus on more easily enabling MDMC to utilize the 

resources produced by this thesis. This includes facilitating data analysis by representing 

output data graphically, utilizing Excel spreadsheets for user input, and maximizing the 

use of open-source resources. During a visit with MDMC in December of 2014, it was 

noticed that Excel spreadsheets are used extensively by MDMC personnel. For this 

reason, they were also used for DES data entry to facilitate integration with order 

management operations. This is accomplished using the Apache open-source library 

POI [3]. In order to facilitate quick data analysis, the Order Management Tool (OMT) 

provides a graphical interface in which statistical output is represented through a series of 

histograms. These are generated using the JFreeChart open-source library [4]. Finally, the 

DES is developed utilizing the open-source library SimKit [5]. By using open-source 

resources, the dependency on proprietary software is reduced, thereby allowing MDMC 

more control in developing future iterations of the tool. 

1. Thesis Scope 

The overall scope of this thesis is to develop and implement the basic 

programming infrastructure required to produce an OMT. While the ultimate goal would 

be to facilitate all higher fidelity production lines for each Principle End Item (PEI) type 

and its associated NIINs, the initial scope in developing OMT must be limited to only a 

handful of repair part types or NIINs and a single PEI. This will allow for easier 

verification of CPIOM, DES, and joint construct functionality. 

In order to establish a baseline in developing the CPIOM, the model is initially 

developed using historical data from five NIINs associated with the Amphibious Assault 

Vehicle (AAV). As discussed later in Chapter II, this small test sample provides critical 

information in relation to how the CPIOM formulates a distribution of required quantities 

for each NIIN. Both the CPIOM and DES in their current form are capable of handling a 

large number of NIINs and PEI platforms, the only limitation being one of computing 

resources. This is possible because the input variables of the CPIOM are the same as 
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those of the DES. In addition, the current simplistic design of the DES does not require 

additional production processes to be modeled. However, this is assuming all associated 

data for each NIIN and PEI are available (i.e., the number of each NIIN for each PEI, 

price of each NIIN, initial quantity of each NIIN, etc.).   

Enhancing the fidelity of the production process being modeled within the DES 

would require modeling multiple production lines, since each PEI platform would require 

a separate production line. That level of detail is beyond the scope of this thesis, which 

focuses on the most critical actions of disassembling and reassembling a PEI.  

The core mission of MDMC is to produce PEIs in accordance with a designated 

output schedule. In meetings with plant managers located in Barstow, California and 

communication with MCLC leadership, it was determined that MDMC seeks to 

maximize the demand required of the output schedule by reducing stock-out conditions. 

There are many reasons why stock-outs may exist, which are discussed later within 

Chapter II. For this reason, CPIOM is specifically designed to minimize stock-out 

situations. The overall goal is maximizing production output.  

2. Literature Review 

The use of optimization modeling in conjunction with DES is a concept having 

several instances of literature studying its various implementations [6]-[11]. This concept 

is referred to as Simulation Optimization (SO) and is applied in a wide variety of 

industries, especially within the supply and logistics domain. In 2001, thesis research 

conducted at Naval Postgraduate School used SO to improve Marine Corps combat 

service and support element operations [7]. That thesis used optimization to determine 

the best use of resources to deliver supplies in a constrained time space environment. The 

results of the optimization are used as input variables within a DES. However, the idea of 

using an SO technique in a dynamic combat environment is most likely impractical, 

which is not the case in established supply chain networks. 

In the area of supply chain network analysis, several studies exploring SO techniques 

are available. In 2006, researchers from the University of Vienna’s School of Business 

developed an SO framework in support of supply chain networks [6]. From Figure 1, one can 
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discern that the idea in this research is to embed a simple optimization model within the 

framework of a complex DES. The optimization model improves the DES overall 

performance by adapting decision rules. After a few iterations, researchers found that they 

gained convergence to good-quality solutions within much less computational time than 

traditional optimization approaches [6]. Researchers from the University of St. Thomas 

created a four-step methodology for SO development of supply chain networks [8]. Figure 2 

provides the basic outline of the methodology. This is essentially the same approach taken 

when developing the OMT (i.e., CPIOM developed first, DES developed second, integration 

of CPIOM and the DES third, and testing fourth). In 2008, research conducted at Arizona 

State University specifically focused on how to integrate optimization and DES models [9]. 

This research was not used in developing the OMT. However, it does provide insight as to 

how more complicated model integration can be achieved. For example, within a specific 

DES run there may be a requirement to run multiple optimization models. Design of the SO 

integration may not be a trivial task.  

 

Figure 1.  Interaction between DES and optimization model. 

D-E is the same as DES. 

Source: [6] C. Almeder, M. Preusser and R. F. Hatl, “Simlulation and Optimization of 

Supply Chains: Alternative or Complementary Approaches?,” OR Spectrum, vol. 31, 

no. 1, pp. 95–119, 2009. 
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Figure 2.  Four-step methodology for SO concept development. 

Source: [8] S. Kumar and D. A. Nottestad, “Suppy Chain Analysis Methodology- 

Leveraging Optimization and Simulation Software,” OR Insight, vol. 26, no. 2, pp. 87–

119, 2012.   

Other SO examples in literature include work dealing with value network design 

problems in the chemical industry [10]. The SO construct within this reference is seen in 

Figure 3. We mentioned previously the need to use multiple optimization problems. The 

figure demonstrates a possible example of this. The optimization model is dedicated to 

only solving a series of smaller sub-problems. The model used in this instance includes a 

series of loops. The scenario based outer loop provides the overall input variables for the 

value network. The two inner loops involve the DES. The second loop being the overall 

time period and the innermost loop being broken into smaller time periods. Within each 

of these planning periods, linear programming and genetic algorithm based scheduling 

produce a feasible product-equipment allocation and production plan [10]. A fourth 

Monte-Carlo loop is applied with the overall time period in which customer demand 

fluctuates. The final SO example we provide is shown in Figure 4. This model was also 
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developed to support chemical supply chain networks [11]. It is similar to the model just 

explained with the exception that the optimization occurs on the outer loop and exit 

criteria is specifically outlined. The SO construct designed in this thesis takes into 

account similar approaches of both models. 

 

Figure 3.  SO construct example one. 

Source: [10] M. Schlegel, G. Brosig, A. Eckert, M. Jung, A. Polt, M. Sonnenschein and 

C. Vogt, “Integration of Discrete-Event Simulation and Optimization for the Design of 

Value Networks,” Computer Aided Chemical Engineering, vol. 21, pp. 1955–1960, 2006.  



 8 

 

Figure 4.  SO construct example two. 

Source: [11] F. D. Mele, G. Guillen, E. Antonio and L. Puigjaner, “A Simulation-Based 

Optimization Framework for Parameter Optimization of Supply-Chain Networks,” 

Industrial and Engineering Chemistry Research, vol. 45, no. 9, pp. 3133–3148, 2006. 

Based on the research conducted, there is sufficient evidence to suggest SO 

techniques are beneficial in solving supply chain network problems [7]–[11]. 

Correspondingly, demand is sufficient to support development of commercial supply 

chain management simulation and optimization software solutions [12]–[14]. This 

includes software made by Llamsoft, Capterra, and AnyLogic.  

It should be noted that MDMC has been the subject of research aimed at 

developing analytical tools to help improve plant operations. One such study conducted 

in 2009 by Northrop Grumman used linear programming techniques for this purpose 

[15]. The model developed within this study “calculates the ‘optimal’ depot-level 
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maintenance capacity and the effect of changing the number of work positions, workload 

priorities, workload requirements, and/or shifts on the optimal capacity” [15]. The overall 

objective of the model is to minimize the difference between workload requirements and 

available workload requirements and available workload given a set time period. While 

the study addressed utilizing DES via commercial software applications (ARENA and 

ExtendSim) to create a management tool, the idea was dismissed due to the additional 

modeling requirements of a DES. In addition, adding a DES to the concept design did not 

fall within the requirements Northrop Grumman was tasked to accomplish [15].  
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II. METHODOLOGY 

This chapter focuses on providing an explanation of what optimization modeling 

and DES are. As will be discussed in more detail, optimization modeling provides a 

mathematical prescription to the problem of maximizing or minimizing a function subject 

to a set of constraints. However, it may not take into account or portray the detailed 

nonlinear stochastic intricacies that exist within the modeled system. Because of this, it 

can be useful to utilize simulation in order to “play out” the results provided by an 

optimization model. It is also important to stress the important contribution optimization 

provides to a simulation. The relationship between an optimization model and a DES is 

discussed in this chapter. 

A. OPTIMIZATION MODELING 

For a basic understanding of how optimization problems are developed, it is 

important to understand the element composition of such problems. The necessary 

elements are input data, decisions variables, constraints, and the objective function. Over 

the next few sections, the aforementioned elements are described with CPIOM provided as 

a test case example.  

1. Decisions 

The decisions in an optimization model are commonly referred to as the variables 

or more formally decision variables. These variables are essentially the unknowns that an 

optimization model is trying to determine in order to achieve the most favorable objective 

of the problem. Decision variables are often represented with mathematical symbols such 

as 1 2, ,..., nX X X . A wide range of decisions can be represented by decision variables. In 

the case of CPIOM, the primary key decision variables are how many items of each NIIN 

type to stock. However, there are other control variables required in the model. These 

variables are not required in the DES and therefore not discussed within this thesis. 
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2. Constraints

The constraints of an optimization problem are simply defined as the limitations 

or bounds confining the model. Generally, constraint relationships are used by bounding 

functions of decision variables to a certain value b as follows: 

A less than or equal or equal to constraint: 1 2( , ,..., ) bnf X X X 

A greater than or equal to constraint: 1 2( , ,..., ) bnf X X X 

An equal to constraint:  1 2( , ,..., ) bnf X X X 

As will be demonstrated through CPIOM, optimization problems will often contain many 

constraints depending on the complexity of the problem [16]. In addition, other 

constraints may require that some or all of the decision variables be restricted to take 

integer values. 

3. Objective

In an optimization problem, the objective function identifies some function of the 

decision variables in which the objective function is either maximized (MAX) or 

minimized (MIN). The general format of an objective function is as follows: 

MAX (or MIN): 1 2( , ,..., )nf X X X

4. Optimization Model Format

An example of an optimization model is represented as follows: 

MAX (or MIN): 0 1(x ,..., )nf x (2.1) 

Subject to: 1 1 1(x ,..., ) bnf x  (2.2) 

1,..., 0nx x   (2.3) 

The above representation reflects the objective function (Equation 2.1) that will be 

maximized (or minimized). The variables are subject to constraints (Equations 2.2 and 

2.3). Of course, other constraints can exist depending on problem complexity.    



 13 

5. CPIOM Explained 

This section provides an abbreviated explanation of the CPIOM model [1]. A 

detailed explanation is provided within Appendix A. When formulating an optimization 

problem, it is important to gather and define the required input data for the model. This will 

provide the user with a reference guide of all indices, index sets, and parameters used. From 

[1], the input data for CPIOM are as follows: 

i I   critical parts, also known as NIINs 

ik K  index for probability levels for part i 

v V  vehicle types or PEIs 

iv V  vehicle type that has part i 

V

vn     number of vehicles type v  

I

in     number of parts i in each iv  vehicle  

in     total number of parts i. Calculated as 
i

V I

v i

v V

n n


  

b      budget for safety stock level 

SO

ic  cost of each stockout of part i  

SS

ic  cost of each part i in safety stock (unused inventory) 

0

iq  initial stock of part i 

0q  one if the initial stock (
0q vector) counts against safety stock budget, and          

zero otherwise 

,ik ikd p  demand for level k, and probability for that level, for item i:  

The decision variables are as follows: 

iQ  quantity ordered for part i  
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SO

ikZ  ancillary variable for stock-out of part i   

SS

ikZ  ancillary variable for parts i in safety stock that apply to the calculation of 

            budget being used 

The decision variables iQ must be whole number positive integers. As a result, the 

CPIOM is considered a mixed-integer problem. Now that the decision variables are 

provided, the objective function and constraints are added. The overall formulation for 

CPIOM is as follows: 

 MIN:             
SO SO

i

ik i ik

i I k K

p c Z
 

                                                                                       (2.5)                     

                       subject to:  

                        
Z

ik

SO ³ d
ik

- (q
i

0 + Q
i
) "i ÎI ,k ÎK

i                                                        (2.6)    

                       
SO 0 ,ik iZ i I k K   

 (2.7)    

                       

0SS 0 ,q

ik i i ik iZ q Q d i I k K     
 (2.8) 

                       
SS 0 ,ik iZ i I k K   

 (2.9) 

                      

SS SS

i

ik i ik

i I k K

p c Z b
 


   (2.10) 

                      
0 and integeriQ i I  

  (2.11) 

For the purpose of this thesis, the goal of the objective function (Equation 2.5) is to 

prescribe the order quantities in order to minimize expected stock-outs subject to the 

constraints (Equations 2.6-2.11).  

A basic description of each constraint is as follows: Equations 2.6 and 2.7 

calculate the stock-outs for NIIN i at every demand level k given order quantity iQ . 

Equations 2.8 and 2.9 calculate the safety-stock for NIIN i at every demand level k given 

order quantity iQ . Equation 2.10 limits the expected safety stock by a budget of b.  

A key point to make about optimization models is that they are capable of 

accommodating elements of randomness. As seen within the CPIOM input variables, 

there is one variable that involves probabilities. A key feature of CPIOM centers on this 

variable for formulating the probability of a certain NIIN to result in a not more than a 



 15 

certain stock-out at varying levels. This iterative formulation over varying demand levels 

results in the output data displayed in Figure 5. This reflects the probabilities of no more 

than a certain level of stock-outs for a particular NIIN. For example, for NIIN ending in 

1278, the probability of having no more than two stock-outs is 72.3 percent. While 

CPIOM portrays the stochastic nature of a given problem, only one answer for a set of 

given inputs is provided. A more detailed explanation of this formulation can be found in 

Appendix A.   

 

Figure 5.  This sample output probability distribution for the CPIOM reflects the 

chance a certain NIIN will have no more than a certain stock-out. 

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine 

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014. 

B. DISCRETE EVENT SIMULATION 

The purpose of this section is to provide a general understanding of DES and how 

it will be used in the context of this thesis. As the name implies, a DES is a simulation in 

which interactions within a system occur as specific discrete events in time. Over the next 

few sections a description of how an event is defined, when an event is executed, and 

what occurs during event execution in the context of this thesis will be provided. 

Specifically, this section will discuss the primary elements of a DES. These elements are 

states, events, and scheduling relationships.  

1. States 

The primary goal of a DES is to model the changes that occurs within a system or 

process for a certain attribute or combination of attributes over time [17]. Capturing this 

change is the cornerstone function of a DES in regards to analyzing a process or system. 

The attribute(s) being modeled are referred to as the state variable(s). The collection of 
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all the state variables in the simulation is referred to as the state space. The overall 

combined status of the state space at any given moment in time constitutes the 

simulation’s state [17]. A simple way to think of this is to consider the simulations state 

as the overall condition of the system at a certain point in time. It is critical to understand 

and identify the state space of a system or process, because it provides the primary basis 

in which the system is to be modeled. In developing a DES, the primary focus is on those 

parts of the system that have an effect on the simulations state. The mechanics of how a 

DES keeps track of a simulation’s state will be detailed in Chapter III. 

2. Events 

Every process consists of key actions that occur at certain points in time that change 

the state of the overall system. These points in time are known as events [17]. When an 

event occurs within a system, the action(s) taken within that event will affect the state of 

the system. An event may reference information about objects, also known as entities, 

which must be passed along within the simulation. Some common examples of entities 

include customers, passengers, and vehicles. As alluded to previously, one of the key points 

to understand when discussing DES is the method in which events occur through 

simulation time. Unlike a time-stepped approach that produces interactions in regular 

intervals or steps, simulated time in a DES moves according to the time of the next 

scheduled event. These pending events are maintained chronologically as event notices in a 

list known as a future event list [17]. As the simulation progresses, event notices are 

removed from the future event list as their respective execution time is reached. 

Correspondingly, new event notices are also added to the list according to the simulation 

design. In some cases, event notices can even be canceled.  

When an event is reached according to the future event list, the event triggers the 

actions defined by that event. There are several actions a state will implement: Two 

fundamental actions include inducting changes to state variables (also known as state 

transitions) and establishing a scheduling relationship between events. Other important 

actions include updating entity information and tracking statistical data.  
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3. Scheduling Relationship and Time Advance 

Establishing a scheduling relationship between events is the driving catalyst of 

the simulation [17]. Every event that occurs is assigned some specific action affecting the 

simulation state and often times scheduling another event. The point at which events are 

no longer created represents the time at which the simulation will end. This can be best 

explained using Figure 6. When the simulation begins, an initial event is scheduled and 

the event notice is placed on the future event list. The simulation advances to the first 

scheduled event referenced on the event list and removes that event notice from the list. 

The referenced event will then execute the actions assigned to it. If one of the actions of 

the event includes scheduling another event(s), they will be placed onto the future event 

list as event notices. The simulation will then advance to the next scheduled event until 

the exit criteria of the DES is achieved or the future event list is empty. The topic of exit 

criteria will be discussed further in Chapter III. This approach to simulation is 

computationally efficient as the program only needs to process events, as they are 

required. 

 

Figure 6.  This graph depicts the algorithm within a DES of processing 

events on an event list. 

Source: [17] A. Buss,  “Discrete event simulation modeling,” unpublished. 
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4. Simulation Parameters 

The simulation parameters of a DES are those variables that do not change during 

the course of a replication of the simulation [17]. Simulation parameters are in many 

cases synonymous with the constraints of an optimization model. For example, a system 

will have certain number of employees available, workstations available, or total number 

of vehicles entering the system. However, this is not always the case. There may be 

scenarios where the DES model does not contain a constraint that exists within the 

optimization model. For example, the number of available work bays is an important 

parameter within the DES outlined in Chapter III and not found in the CPIOM. This 

converse situation may also occur. 

5. Event Graphs 

Event graphs are an important modeling tool used in developing a DES. Using 

event graphs allows the simulation developer to organize and visualize the process being 

simulated. This is accomplished by essentially copying the laydown of the events as they 

appear in the real world. As explained in [17], event graphs consist of nodes to represent 

events and directed edges to represent scheduling relationships. Figure 7 is an example of 

a simple event graph extracted from [17] for a multiple server queue. In this example the 

nodes represent the events and the directed edges represent the scheduling relationships 

between events. From Figure 7, there are a total four events: Run, Arrival, StartService, 

and EndService. The expression beneath each event reflects the state transitions taken for 

that event. From Figure 7, the state variables are Q , the number of customers in the 

queue, and S, the total number of available servers. The Run event initializes Q to 0 and S 

to the parameter k. The directed edge from the Run event to the Arrival event means that 

the Run event schedules the Arrival event tA time units after the Run event. The self-

scheduling arc on the Arrival event means that it schedules another Arrival event t A  time 

units in the future. The sequence {tA} is considered a parameter of the model, and 

represents the successive customer interarrival times. This sequence {tA} can either be a 

pre-specified collection of numbers or generated by a probability distribution.. Each 

occurrence of the Arrival event will therefore carries out three separate actions. First, it 
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will increase the state variable value by one (the state transition). Second, it will schedule 

another arrival event. Third, it will attempt to schedule the start service event. Along the 

scheduling edge there is an annotation with a (S > 0) above it. This annotation means that 

a certain condition must be met in order to schedule the respective event. The condition 

(S > 0) means that a server must be available for the start service event to be scheduled. 

Similarly, the condition (Q > 0) on the edge from EndService to StartService means that 

at least one customer must be in the queue for a StartService event to be scheduled. In 

summary, an event graph provides the structure for DES program implementation.   

 

Figure 7.  Event Graph for multiple server queue with citation 

Source: [17] A. Buss,  “Discrete event simulation modeling,” unpublished. 

 

6. Entities 

Entities can be interpreted as the objects that move through a process or system. 

Examples of entities include job orders, customers, or vehicles. The use of entities is 

convenient when the modeled process must know what attribute(s) the entity possesses. 

For example, there may be several production lines modeled in which multiple vehicles 

are produced. Each vehicle entity will have an attribute identifying what type of vehicle it 

is. When the vehicle enters the system, the DES will use this attribute to determine what 

production line to enter. A vehicle entity may include inventory attributes. An inventory 

attribute will enable the DES to determine what parts each individual vehicle requires. In 

order to leverage the full analytical capability of a DES, entities may also include 

attributes involving time. This includes the creation time and the last time an entity 

Run
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Arrival
Start

Service

End 

Service

{Q = Q + 1}
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encounters significant events. The attributes used are dependent on organizational 

objectives and complexity of the represented system. Entities will be discussed in more 

detail within Chapter III. 

C. JOINT OPTIMIZATION AND SIMULATION AND MODELING 

An intrinsic link is developed when combining Optimization modeling and DES 

to analyze a particular process. As discussed previously, optimization modeling will 

allow a deterministic, best case scenario to be calculated. A DES on the other hand can 

account for the internal stochastic interactions of a process otherwise not possible using 

optimization modeling. If designed properly and assuming the probabilistic data used is 

representative of the future, a simulation can accurately replicate the process being 

analyzed. This section will discuss the important role optimization modeling and DES 

play for each other. This includes a discussion on how the techniques facilitate model 

verification. Lastly, this section will provide a case study using simulation to enhance the 

CPIOM results.   

1. Optimization and DES Intrinsic Link 

By now, it should be recognized that an optimization model and DES naturally 

complement each other. Specifically, an optimization model’s prescriptive and static 

nature supplements the descriptive and dynamic nature of the DES and vice versa. Seeing 

that the two techniques are mutually supporting of each other in order to achieve a 

decision making objective, an intrinsic link between them should exist.   

The first reason is that both techniques require identical inputs since they are 

modeling the same process. The second reason is that the output of the optimization 

model provides important input information to the DES and vice versa.  

A DES only “replays” the process in accordance with the inputs it is provided. 

Without some analytical approach such as a design of experiments or optimization 

modeling, trying to determine a best-case scenario using DES alone is a severely 

inefficient method. For example, assume there is a group of widgets needing to be 

repaired that require four different NIINs, each having a different cost. For each NIIN, a 
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quantity of n = 15 parts is required. In order to determine the cost of every combination 

of the r = 4 NIINs using simulation, a total of 1,365 possible combinations would need to 

be simulated:  

 

!
1,365

!( )!
n r

n
C

r n r
 

  (2.12) 

While it may be possible to run an algorithm that simulates every possible combination, 

this is certainly a poor use of computing resources when optimization modeling can 

determine an optimal solution mathematically. Assuming the 1,365 simulations run a 

total of 10,000 repetitions per simulation, the use of an optimization model would reduce 

the number of simulation repetitions by 13,640,000. This is just a simple illustration of 

why optimization modeling is important when utilizing DES in the context of this thesis.  

While optimization modeling is a very powerful tool, its deterministic nature is also a 

potential limitation. As mentioned previously, an optimization model can take probabilistic 

input data to produce a mathematical result such as represented in Figure 5. However, 

optimization is not dynamic in nature and therefore limited in its ability to analyze the 

internal stochastic intricacies of a process, which are naturally handled by a DES.  

Every simulation repetition run potentially has a different outcome. This brings up a 

third primary reason an intrinsic link exists: Without a DES, an optimization model would 

essentially be unable to compensate for the stochastic and dynamic nature of the modeled 

process. A DES allows an optimization model to account for this stochastic nature by 

facilitating “course corrections” within the process as time progresses. This is 

accomplished by allowing the optimization model to essentially take a snapshot of the 

simulations state at prescribed times in order to re-optimize the process being simulated. 

The specifics of how this is accomplished in regards to CPIOM is explained in Chapter III.  

Lastly, an intrinsic link exists because a DES provides additional statistical 

information other than the optimization models bottom-line results. Additional 

information detailing the stochastic intricacies of a system not only facilitates the model 

verification process but also the decision making process for which the optimization 

model is designed. The next section demonstrates this concept of integrating simulation 

and CPIOM.  
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2. Monte Carlo Simulation with CPIOM 

This section will briefly show how simulation can provide additional insights for 

an optimization model. For this demonstration, the output data of CPIOM [1] is analyzed 

using a Monte Carlo simulation technique. The use of a Monte Carlo simulation is a basic 

process in which CPIOMs input data and the optimal order quantity output is used to 

calculate total safety stock and total stock-out cost. For each calculation, the demand is 

generated from the parts distribution probability input file. As a result, each calculation 

will be different. In this example, the simulation is run a total of one million replications 

using the optimal order quantity data provided by CPIOM for the baseline scenario listed 

in [1]. The results provided by this simple demonstration reflect how simulation can not 

only support the model verification process, but also provide additional statistical insight. 

a. Model Cross Verification 

Cross verification between a simulation and optimization model allows the 

program developer to ensure the program is in fact working as intended. Verification is 

an important step in the model validation process as it ensures the technical details are 

being met. Perhaps one of the most difficult tasks when developing a model is being able 

to validate that the model is accurately representing the real-world system. This 

validation cannot happen unless we know that the model is first verified to be accurate. 

The utility of using simulation and optimization to support this cross verification process 

is seen when looking at the baseline scenario output data from [1]. The CPIOM’s output 

data for the baseline scenario is seen in Figure 8 [1]. The optimization output provided is 

the bottom line result of the optimization model. That is the total expected stock-out cost 

of $10.18 and total safety stock cost of $29,983.41. As seen in Figures 9 and 10, the 

Monte Carlo simulation output data for the baseline scenario yields very similar metrics. 

Over a million repetitions, the simulation reflects a mean total stock-out cost of $10.19 

and a mean total safety stock cost of $29,967.92. The closely matched metrics provide 

cross verification between both the simulation and the optimization model. By ensuring 

the simulation and optimization are functioning as programmed, future iterations of either 

model can be developed with greater degree of confidence.  
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Figure 8.  CPIOM output results for the baseline scenario. 

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine 

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014. 

 

Figure 9.  From [1], Monte Carlo simulation output for total stock-out 

cost for the baseline scenario. 

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant Utilization at Marine 

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014. 
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Figure 10.  Monte Carlo simulation output for total safety stock cost 

for the baseline scenario. 

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine 

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014. 

b. Improved Statistical Analysis

Because the simulation is able to provide dynamic run-by-run analysis not 

possible with a static optimization model, additional statistical analysis can be achieved. 

As seen in Figures 9 and 10, the multiple runs allows for the data to be used in a 

histogram according to total stock-out cost and total safety stock cost. This visual 

representation may facilitate statistical analysis thereby leading to improved decision 

making otherwise not possible using an optimization model alone. When looking at the 

statistical data resulting from the Monte Carlo simulation, a couple of useful pieces of 

information can be deduced. Notice from Figure 9  that 20.2 percent of replications will 

result in no stock-out cost and about 30 percent will result in none or very little stock-out 
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cost. In other words, over 70 percent of replications reflect a stock-out cost using the 

“optimal” CPIOM output data. When looking at the total safety stock cost metric in 

Figure 10, the simulation reflects 47.8 percent of replications exceeding the prescribed 

budget. In the operational environment, exceeding the budget is often unacceptable. Both 

of these cases demonstrate how simulation will allow managers to more readily answer 

questions concerning risk and ultimately shape their decisions. It is noted that 

optimization models are not without useful statistical information. For example, an 

extended version of CPIOM reflects the chance constraints by individual NIIN. As 

discussed earlier, Figure 1 provides the likelihood for a particular NIIN to have no more 

than a certain number of stock-outs. In conclusion, this co-optimization modeling and 

simulation building approaches work complementarily to each other thereby allowing for 

improved statistical analysis.   
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III. IMPLEMENTATION 

One of the primary objectives of this thesis is to design, develop, and implement a 

program that establishes the initial framework for a more robust Order Management Tool 

(OMT). The OMT references the overall program discussed in the remaining chapters. As 

an initial construct and proof of concept, the underlying DES model within OMT is set up 

to accommodate the minimal key events of an MDMC production line. Future iterations 

of OMT can be expanded, tested, and evaluated in accordance with the live environment.  

The foundational implementation objective is to design OMT in a manner that 

allows seamless integration of the DES and CPIOM. In order to allow for MDMC to 

easily experiment with and validate the program, input data was in the form of Excel 

spreadsheets, which are currently used and easily understood by MDMC personnel.   

The secondary objectives include providing the user with output data in a 

graphical format and using open-source solutions. The graphical output component of the 

program will allow the user to quickly visualize important statistical data. In regards to 

open-source solutions, this provides MDMC with uninhibited access to the program 

resulting in increased flexibility in program development without the burden of 

contracted support.  

This chapter will discuss in detail how these requirements were implemented. 

This includes introducing the tools used as well as potential alternative tools. The joint 

DES and optimization construct will then be explained in order to provide the 

overarching implementation concept of the system. With an understanding of the joint 

construct, the DES model will be explained in detail. Finally, this section will walk 

through aspects of the computer code in order to provide an understanding of program 

implementation from a computer programming perspective. As mentioned earlier, 

implementation of CPIOM is not the focus of this thesis. CPIOM will only be discussed 

as it pertains to OMT programming implementation. 
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A. DEVELOPMENT TOOLS 

In this section, the various resources used for OMT development are explained. 

The DES portion of OMT uses open-source resources obtained via the World Wide Web. 

By utilizing these open-source resources, this allows for MDMC and LOGCOM to have 

full access and control to the programming code. The only limitation that may exist is the 

ability to install the General Algebraic Modeling System (GAMS) onto government-

owned computers [18].  

1. GAMS and Cplex 

GAMS is a commercial off-the-shelf program specifically designed for modeling 

linear, nonlinear, and mixed-integer optimization problems. The program is especially 

useful when dealing with large complex problems containing many variables and 

constraints. The features of GAMS allow the user to focus on modeling rather than the 

technical machine-specific problems.  

GAMS/Cplex (www.gams.com/dd/docs/solver/cplex/) is a  solver that allows 

users to combine the high level modeling capabilities of GAMS with the power of Cplex 

optimizer [19]. This is designed to solve large-scale optimization problems employing 

state-of-the-art solution algorithms designed for linear and mixed-integer programming. 

Because GAMS is used to implement CPIOM, the computer program developed in this 

thesis currently interfaces with GAMS as opposed to other alternatives. It is important to 

note that comparing between GAMS/Cplex with the open-source solver LPSolve 

(described next)  showed GAMS/Cplex to be a substantially faster solution engine.71 

2. LPSolve 

LPSolve (http://sourceforge.net/projects/lpsolve/) is one of many open-source 

optimization solvers [20]–[22]. This solver is based on the revised simplex method and 

the branch-and-bound method for integer problems. LPSolve is being mentioned in this 

thesis to show that CPIOM can be implemented using only open-source solutions. The 

limitation is that LPSolve may not necessarily achieve the result as effectively as 
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GAMS/Cplex, which is used by the current OMT construct. This is most likely due to the 

robust capabilities of their proprietary counterparts. 

3. Java Based Tools 

OMT development uses four open-source Java based resources. The first resource 

is the integrated developer environment known as NetBeans [23]. This fully featured 

program enables software developers to develop Java desktop, mobile, and web 

applications. The second resource is an open-source library developed by Naval 

Postgraduate School called SimKit [5]. This library enables development of robust DES 

programs. The third resource is derived from the Apache POI project found at [3]. The 

project’s mission is to create and maintain Java Application Programming Interfaces for 

manipulating various file formats based upon the Office Open XML standards and 

Microsoft’s OLE 2 Compound Document format (OLE2). In short, a program can read 

and write Microsoft Excel files using Java. In addition, it can be utilized to read and write 

Microsoft Word and Microsoft PowerPoint files. The fourth resource is the Java 

JFreeChart library derived from [4], which is used to create the output charts for OMT. 

B. JOINT OPTIMIZATION AND DES CONSTRUCT 

This section explains how the optimization model and the DES interfaced. The 

explanation of this interface includes the specific details of how the order management 

process is integrated with the production process over time. In addition, a brief 

explanation of how the simulation terminates, followed by a basic example of the joint 

optimization and DES concept.  

1. Implementation Overview 

Implementation of the joint optimization and DES construct is a straightforward 

concept in which CPIOM and the DES rely on each other for critical input information as 

time progresses. Both the production process and the supply system are dynamic systems 

that are often unpredictable. Unpredictable changes result in plans and outcomes being 

altered. This joint concept will allow for the situation to be reassessed at designated times 

in order to accommodate these changes. It should be made clear that the DES is 
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stochastic based on historical parts ordering and vehicle condition data. When running 

the OMT, it is assumed that the historical data used are representative of the future 

behavior of the supply system and vehicle condition. If this is indeed the case, this joint 

concept will be effective in making the small adjustments required to achieve the 

objective of the OMT.  

The CPIOM and DES are dependent on two primary inputs. The first inputs are 

the initial parts inventory levels. With the exception of the initial optimization run, the 

critical information provided by the DES and required by the CPIOM is the current parts 

inventory levels. The current parts inventory levels maintained by the DES serve as the 

initial parts inventory levels at the moment the optimization model is run. The unknowns 

to the DES are the parts order quantities. This critical information is provided by CPIOM 

and required by the DES. As discussed in the previous chapter, the order quantities for 

each part are the decision variables of the optimization model. Once CPIOM is run, the 

DES will use CPIOM’s decision variable outputs as input variables. This iterative process 

of the CPIOM feeding critical information into the DES and the DES feeding critical 

information into the CPIOM will repeat as defined by the user.  

2. Termination Criterion

As illustrated in Figure 11, a complete cycle of the simulation may consist of one 

or many iterative loops within the OMT construct before meeting the exit criteria. The 

number of loops made and total time this cycle lasts is based on the optimization 

frequency and total simulation time as dictated by the user. Once the exit criterion is 

achieved, the loop will end and the cycle will repeat itself until the required overall 

criteria has been achieved for the simulation. For example, a user may dictate for the 

cycle to consist of one optimization per yearly quarter for a period of one full year. In 

other words, the loop will occur four times and exit directly from the DES on the last 

loop.  
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Figure 11.  An example of the OMT joint construct. CPIOM is applied 

throughout the DES as dictated by the user. 

As alluded earlier, the OMT joint construct cycle repeats until achieving the 

required simulation repetitions. There are a couple of methodologies in defining the 

overall termination criteria. The more formal way is based on convergence to some 

steady state using statistical methods for a specific state variable. For example, at the end 

of every complete cycle of the joint model, the DES could record the production 

completion rate. A possible convergence metric may be looking at the residual value 

based on the production completion rates. At the end of each joint model cycle, the 

residual would be recalculated and the absolute values for the difference between the 

newly recalculated residual value and the old residual value calculated. If there is a 

difference, a counter will reset itself. If not, the counter will increase. Once the counter 

reaches a certain threshold, the simulation will end. Essentially what is happening is that 

the residual is stabilizing (meaning that there is not enough variation to warrant further 

iterations). This value will fluctuate and eventually stabilize as the number of simulation 

samples increases. In other words, the simulation will converge to a certain residual 

value. There are several approaches that can be found in literature discussing the topic of 

determining the number of simulation runs to be made [24], [25]. The simpler and non-

scientific approach would be to simply set a very high number of simulation repetitions 

as the exit criteria. This is ideal if the computing speed and available memory permit, and 

is the approach used in this thesis. 
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3. Concept Example

Figure 11  provides a simple example of the overall OMT construct process. In 

this example, the optimization frequency is set to a rate of one optimization per yearly 

quarter. The total simulation time is one full year. This means that CPIOM is run a total 

of four times in the course of a single replication. When the DES reaches the one year 

mark, the OMT program will exit the DES. This completes the first simulation 

replication. The OMT will compile the statistical data from the DES and determine if the 

exit criterion (required quantity of simulation runs) is achieved. If so, the OMT will exit 

out of the overall simulation and take appropriate actions prior to closing. Otherwise, the 

OMT will repeat the process.  

Walking through Figure 11, when the OMT is initiated there is a gap between 

when the DES begins and when the optimization model is run. During this time, the 

OMT will extract data from the user-provided Excel spreadsheet and compile these data 

for use by both the CPIOM and the DES. Once this process is complete, the CPIOM will 

run. This first run of the CPIOM within the joint model construct is unique because the 

initial inventory was provided by the user. Once CPIOM completes its initial run, the 

DES will begin and the simulation time clock starts. From the onset of the simulation 

starting, the DES will initialize itself by extracting data from not only the previously 

compiled user-provided data but also from output provided by the initial CPIOM run. In 

addition, the DES will schedule the first optimize event a quarter in advance. The DES 

will then progress through the event list. Upon reaching the beginning of the second 

quarter, the second optimization will occur. This run and all subsequent runs of CPIOM 

will now use the current parts inventory maintained by the DES as its initial inventory 

input. The CPIOM is run and another CPIOM run is scheduled a quarter in the future. 

Again, the DES takes the output from the CPIOM and initiates the appropriate follow-on 

actions required as result of the optimization event. The CPIOM will repeat itself two 

more times as the DES progresses through time. Upon reaching the end of the simulated 

year, the DES will then exit the joint model construct. At this point, the program will 

compile the statistical data as well as determine if the joint model construct should be 

repeated. If the exit criteria or number of simulation repetitions has not been achieved, 
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the process just described will be repeated. Of note, the extraction and compilation of 

user data only occurs once. The CPIOM can immediately run with the originally 

compiled data. If exit criteria is achieved, the OMT will not repeat the process and take 

all pre-closing actions before terminating. 

C. OMT PROGRAM AND DES MODEL EXPLAINED 

With the joint optimization and DES construct explained, we set the stage for 

explaining the fine details of how the DES is implemented. This section begins by providing 

a general overview of the scenario in order to gain an understanding of the simulated model. 

This will lead into a detailed discussion of each component and subcomponent within the 

DES, (i.e., the individual events, states, parameters, entities, and scheduling relationships). 

This discussion of DES components and subcomponents culminates by walking through the 

model being simulated using the event graph for this DES.  

1. Model Scenario

The model in which this program is based is formulated upon a basic production 

scenario where PEIs of a single type enter into a production plant in order to be 

completely dissembled and then reassembled from a parts requirement perspective. The 

condition of each PEI is unknown upon entry. Once the PEI has been completely 

dissembled, a determination as to the condition of the PEI from a parts perspective is 

made. The PEI is then reassembled with serviceable parts. This completes the production 

process. Obviously, new parts will be required in order to replace the unserviceable parts. 

Without knowing the condition of the vehicles ahead of time, plant managers must 

somehow estimate what parts will be required in order to preorder the parts and avoid a 

stock-out situation. The plant also does not want to exhaust its budget ordering parts that 

will not be needed i.e., having safety stock. Large amounts of the budget tied up in safety 

stock could inhibit purchasing parts in a stock-out situation. The combined effect of parts 

existing in a stock-out and safety stock status could result in the production line being 

impeded and thereby reducing production plant capacity. Of course, there may be other 

reasons why MDMC managers are seeking ways to improve parts management. 
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The fundamental goal of this basic scenario is to allow a fully functional program 

to be developed. This will allow future developers to focus solely on validating the 

existing model as well as expanding the scenario. This includes, but is certainly not 

limited to, adding multiple PEI types, increasing individual production line fidelity, 

adding additional model constraints, and adding multifunctional production line 

capability for a specific PEI.  

2. OMT Program Requirements 

With the base scenario and joint optimization construct in mind, attention can be 

focused on determining the functional requirements of the OMT program. In addition, the 

primary and secondary objectives mentioned earlier in this chapter are also converted into 

functional requirements of the DES program. Functional specifications require that the 

OMT be capable of 

1. extracting user input from Excel spreadsheets. 

2. creating csv input files for use by CPIOM. 

3. seamlessly interfacing the DES with CPIOM. 

4. creating individual PEIs of a single type. 

5. determining individual PEI condition using historical data from a parts 

perspective. 

6. determining an individual part’s lead time using historical ordering data.  

7. maintaining an inventory of parts. 

8. calculating, ordering and receiving parts. 

9. maintaining simulation state statistics 

10. producing graphical representation of state statistics (secondary 

requirement) 

11. using open-source tools to the maximum extent possible (secondary 

requirement) 

In developing the OMT, each requirement is independently tested and developed as its 

own separate Java class to the maximum extent possible. This approach helps in breaking 
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the program into smaller, more workable pieces, which ultimately helps when debugging 

or updating certain aspects of the program. 

3. DES Entities 

The entities within this DES are the individual PEIs. Because the PEI class 

extends SimKit’s Entity class, each PEI contains all of the functions and attributes 

associated with the Entity class. This includes the inventory, identifier, creation time, and 

time stamp. The PEI class in particular assigns additional attributes to include the PEIs 

internal inventory, time to assemble, and time to disassemble. The assembly and 

disassembly time are only temporary attributes. A more appropriate method in assigning 

these times would be to reference an index. This is especially true if the production line 

fidelity is increased. One production line could consist of hundreds steps resulting in a 

complex index of production times. As the PEI moves through the production line, the 

PEIs internal inventory would be adjusted as appropriate. The DES’s ability of knowing 

what parts a PEI has and being able to remove and add parts from it is the cornerstone 

function of the DES. 

4. DES Parameters 

As mentioned earlier, the parameters are all of the input variables that do not 

change within the DES. This includes the following: 

 Cost of each part per NIIN 

 Parts required for each PEI type 

 Total number of bays 

 Re-optimization time 

 Total number of PEIs entering system per optimization period 

 Total simulation time 

Some of these parameters must be placed into an array for easy reference by the program. 

For example, the parts required for each PEI type could potentially consist of thousands 

of NIINs with varying quantities for dozens of PEI types. Consolidating this information 

into an array will facilitate quick access as to what a PEI requires. Having access to this 
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array via an index will facilitate efficient creation of each PEI. As model complexity 

increases, especially in regards to model constraints, so will the number of parameters.   

5. DES State Space and Statistical Information 

Derivation of important statistical information comes from the state variables that 

comprise the state space. The state space analyzed for this DES focuses on aspects of the 

parts inventory and how the PEIs move through the production process. Because each 

state variable is dynamic, we can derive statistical information about the system itself 

from the state trajectories produced by the simulation. This section explains the purpose 

of each state variable and important statistical information derived from it. In addition, 

the model can be adjusted to capture additional desired statistical data. 

a. Arrival Queue Delay 

The arrival queue delay state variable reflects how long PEIs are waiting before 

being disassembled. The time of delay is determined using the PEIs internal time clock. 

With this information the average delay time for PEIs awaiting disassembly can be 

derived. In the context of this thesis, this will indicate a deficiency in regards to available 

workspaces. If stock-out situations are severe enough to prevent PEI production goals 

from being met, new PEIs entering the system risk the chance of not having a workspace 

available. This metric can potentially provide planners with information to support 

increasing logistical capabilities if there is truly a high likelihood of increased stock-out 

situations. As a result, proactive decisions can be made in order to allow the production 

process to continue in regards to plant disassembly operations.   

b. Arrival Queue 

The arrival queue state variable maintains each PEI into the system in the actual 

order they arrive into the system. This state variable allows the program to determine the 

average number of PEIs in the arrival queue throughout the simulation. Having an idea of 

how many PEIs are not being accommodated provides additional insight to the problem. 

Some delay in the queue may be perfectly acceptable. However, a large number of PEIs 

being delayed even a short time may not be acceptable. This metric is particularly useful 



 37 

for planners when trying to determine exactly how plant operations should be modified in 

regards to either the acceptance of new PEIs or increasing logistical capabilities.  

c. Assembly Queue Delay 

The assembly queue delay state variable reflects how long PEIs are waiting before 

being reassembled. Again, the time of delay is determined using the PEIs internal time 

clock. As with the disassembly queue delay, the average delay time for PEIs awaiting 

assembly can be derived. In the context of this thesis, the only reason a PEI would not be 

assembled is if any of the required parts is not available (i.e., is in a stock-out status). The 

primary objective of CPIOM is to avoid the situation of PEIs not being produced due to 

stock-out situations. While it may not be realistic to say that all parts must be available in 

order to reassemble a PEI, it would certainly be conducive to the production process if 

this were the case.  

d. Assembly Queue 

Like the arrival queue, the assembly queue state variable maintains each PEI 

arriving into the assembly queue in the actual order they arrive. This allows the DES to 

determine the average number of PEIs in the assembly queue. This metric provides added 

insight as to the impact of stock-outs.  

e. PEI Time in System 

The PEI time in system state variable simply reflects the time it takes for each PEI 

to move through the entire production process, i.e., from arrival to completion. This 

allows the DES to determine the average time it takes for a PEI to be produced. While 

perhaps not as important a measure as the percentage of PEIs produced, this statistical 

measurement is a good measure of performance as to how efficiently PEIs are being 

produced. Comparing this metric to the overall time it takes to produce a PEI with no 

delays can provide useful information as to how adjustments to the system can be either 

detrimental or conducive to the process. 
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f. PEIs Completed 

The PEIs completed state variable reflects the PEIs in a completed status. Once a 

PEI is reassembled it is placed into list of completed PEIs. The sole purpose of this state 

variable is for determining the percentage of PEIs completed at the end of the DES. This 

metric is considered the most important one of the system. The goal is to ultimately 

produce all of the PEIs by the end of the DES.  

g. Total PEIs Entering System 

The total PEIs entering system state variable reflects the number of PEIs entering 

into the system. The only purpose of this state variable in the context of this thesis is for 

calculating the percentage of production completed at the end of a simulation run as 

explained in the PEIs completed section. However, there are several other statistical 

calculations that may utilize this state variable. 

h. Number of Available Bays 

As the name implies, this state variable reflects the number of bays available at 

any given moment in simulation time. The number of available bays state variable also 

serves as the basis for determining if a PEI can be disassembled or not. The primary 

statistical measurement derived from this state variable is the average number of 

available bays available. Using this statistic, the average bay utilization can be calculated. 

This can be useful in determining how well production line resources are being utilized. 

A low utilization rate would indicate that the system resources are not being maximized. 

On the other hand, very high utilizations can result in unacceptably large delays. While 

this measure falls out of the scope of this thesis, further studies may reveal many 

interactions within the modeled process. 

i. Parts Inventory  

This state variable reflects the total inventory of the production process. This is 

the most dynamic state variable because it can potentially consist of thousands of parts 

and changes throughout the production process. Statistical measures can be derived at 

both the holistic inventory level or at the individual part level. The primary statistics 
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derived from this variable is the average stock level quantities. This statistic will allow 

for other useful statistics to be determined such as overall total average safety stock cost 

and percentage of stock out that exists. The OMT in its current form does not allow for a 

determination of time the inventory or component thereof remains in a particular stock 

status i.e., stock out or safety stock status.  

j. Part Order Quantity

The part order quantity state variable reflects the quantity of each part that needs 

to be reordered. As discussed above, the part order quantity is the decision variable 

output of CPIOM and will change each time CPIOM is run. The current program does 

not utilize this state variable for the purpose of statistical inference.  

k. Deficient Parts Quantity

The deficient parts quantity state variable reflects the quantity of each part of a 

PEI that is unserviceable. As with the part order quantity state variable, this variable is 

not utilized for the purpose of statistical inference.  

6. DES Event Graph

This section will briefly describe the event graphs associated with the DES. 

Detailed explanation of the event graphs is provided in subsequent sections. There are 

two event graphs used to outline our DES. Figure 12 reflects the event graph for the PEI 

arrival process and Figure 13 reflects the event graph for the PEI production process. The 

goal of the event graph is to represent the entire programming construct of the DES. 

Often, small elements of pseudo code exist within the event graph to represent the 

specific actions taken by a particular event. For the sake of visual clarity, only a few 

conditionals and variables are outlined in Figure 12 and Figure 13. The event graph can 

essentially be viewed as the DES’s blueprint. 
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Figure 12.  The PEI arrival process event graph programmatically outlines the 

process of generating a PEI entity. 
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Figure 13.  The PEI production process event graph programmatically outlines the 

production process for a PEI entity. 

Notice that in both event graphs there are a series of lines leading from one 

process to the other. This means the two processes are “listening” to each other. Because 

some of the event list logic, the sequence of scheduled events do not necessarily 

correspond chronologically. In order to facilitate interpretation of the event graph, all 

state variables and parameters used within the event graphs are referenced in Tables 1 

and 2. Table 1 provides a reference for all parameters and Table 2 provides a reference of 

all state variables. We will then discuss in detail each event associated with the event 

graph.  
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Table 1.  List of parameters for the arrival process and production process 

event graphs. 

Parameter Type Initial Value Abbreviation 

totalNumberBays Int User defined K 

NIINLeadTime Double varies 
leadt

PEIDisassemblyTime Double varies 
dist

PEIAssemblyTime Double varies 
assemt

reoptimizeTime Double User defined 
optt

arrivalTime Double User Defined 
arrivalt

qtyPEIPerOptimize Int User defined R 

Table 2.  List of state variables for the arrival process and production 

process event graphs. 

State Variable Type Initial Value Abbreviation 

PEIComplete ArrayList<PEI> Clear C 

numberAvailableBays Int K B 

totalNumberAvailableBays Int 0 T 

arrivalQueue PriorityQueue<PEI> Empty arq 

assemblyQueue PriorityQueue<PEI> Empty Asq 

totalDelayInArrivalQueue Double NaN DR 

totalDelayInAssemblyQueue Double NaN DS 

delayInArrivalQueue Double NaN Tdr 

delayInAssemblyQueue Double NaN Tds 

totalTimeInSystem Double NaN TS 

timeInSystem Double NaN Pts 

inventory Map<String,Integer> original inventory I 

numberOfArrivals Int 0 N 

qtyPEIRemainingCreation Int qtyPEIPerOPtimize D 

fromOptimize Boolean False O 

peiServiced Int 0 Sp 

enterStartDisassemblyTally Int 0 DT 

partsArrived Boolean False PA 

7. PEI Arrival Process Event Graph

The PEI arrival process component within the DES is responsible for creating 

entities (i.e., creating new PEIs). We will explain in detail this component as outlined in 

Figure 12. This explanation is broken up by individual events. Reference Tables 1 and 2 
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for further clarification of variables used within the event graph. For visual clarity, Figure 

12 is a generalized representation.

Programmatically speaking, the PEI arrival process is built on a simpler arrival 

process by creating a subclass of the Arrival Process. Instead of creating a new method or 

complicating an existing method, we add onto existing code without altering the original 

method. When a method of the same name is in the subclass, it is termed “extending” the 

method. Additionally, a subclass often adds methods and variables. In this case, the PEI 

arrival process “extends” the arrival process. This means the PEI arrival process will take 

on the functionality of the basic arrival process and add additional functionality. 

a. Run Event

As its name implies, the run event is the first event that occurs within the DES. 

This event is executed once per simulation iteration and carries out the initial actions of 

the DES through via the reset() and doRun() methods [17]. The reset() method resets all 

applicable state variables to the starting state value. The state variables that apply to the 

PEI arrival process event include the number of arrivals, number of PEI arrivals 

remaining, and the from optimization variable. These variables are set according to Table 

2. The doRun() method ensures variables needing to be tracked for statistical purposes

are established. In this case, the numberOfArrivals variable is required for statistical 

tracking. At this point, the Arrival Event is immediately scheduled. Information is passed 

along when scheduling a new event to include the next scheduling time and relevant 

additional information. Additional information may include entities and variables. The 

information passed for the Arrival Event include the fromOptimization variable and the 

interarrivalTimeGenerator variable. The fromOptimization variable is not necessary in 

the simulations current state. However, it may be necessary if there are unique actions 

occurring on initial execution. The interarrivalTimeGenerator variable allows the 

simulation to randomly assign a time and can modified as the user sees fit. 

b. Arrival Event

The Arrival event executes once the randomly assigned schedule time has been 

reached. The first action taken by this event is to keep track of the total number of PEIs 
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entering the system. Each time a new PEI enters the system, the numberArrivals variable 

is increased by one for statistical purposes. At this point the simulation immediately 

moves onto the PEI creation event. Currently, the Arrival event schedules the next event 

for newly arriving PEIs in mass. The assumption is that the PEIs are staged and ready for 

processing. 

c. PEI Creation Event 

The primary purpose of this event is to facilitate PEI creation and update the 

master inventory. As mentioned earlier, this event is an extension of the arrival event. 

Because of this, the event is technically not an additional event but part of the arrival 

event. In fact, the first action of this class is to call the arrival event. However, we are 

treating it as a separate event rather than lumping it into the previously explained 

“Arrival” event for conceptualization purposes. Once the Arrival event completes its 

tasks, this event will instantiate a new PEI. We initially assume all parts are serviceable. 

As a result, the required parts for that PEI is added to the main inventory and the PEI 

itself. A determination of what parts are unserviceable will occur after the vehicle is 

disassembled. At this point, this event will immediately schedule the PEI arrival event 

passing along the PEI itself and numberArrivals variable. The final step is to reduce the 

numberArrivalsRemaining variable by one. This process will repeat itself until there are 

no further arrivals remaining. Only one PEI type will enter the system and all PEIs are 

scheduled to arrive at the same time with no variability in the number of arrivals. 

However, the PEI arrival process can be programmed to generate PEIs either 

deterministically or randomly for the both the quantity of PEIs and arrival frequency. 

How the PEIs will arrive is ultimately up to the user. For example, the user may choose 

48 AAVs and 12 howitzers to arrive at the same time and an unlimited number of trucks 

to arrive randomly, depending on the scenario being modeled. 

d. PEI Arrival Event 

In relation to the PEI arrival process, no actions occur within this event. Because 

the PEI arrival process is independent, the production process must be paying attention to 

the PEIs that are arriving. Each time a PEI arrives, the PEI production process is listening 
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for the PEI arrival event. Within the SimKit programming construct, this is known as an 

“event listener.” Notice in Figure 12 and Figure 13 that there are a series of connector 

bars leading to a process. This means that each process is listening to each other.    

8. PEI Production Process Event Graph

The DES PEI production process component is responsible for replicating the 

actual production process a PEI must go through. This process is outlined in Figure 13. 

As before, an explanation is broken into individual events. Reference Tables 1 and 2 for 

further clarification of variables used within the event graph. For visual clarity, Figure 13 

is a generalized representation. 

a. Run Event

This event follows the same methodology as explained for the PEI arrival process 

run event. The reset method sets all remaining state variables according to Table 2. 

Second, all csv files are instantiated for use by CPIOM. Third, the initial optimization 

occurs. Lastly, the main inventory is updated with the current safety-stock. Statistical 

tracking for all applicable variables is established via the doRun() method. This includes 

tracking changes in the assembly and arrival queues, number of available work bay, 

changes in the inventory, number of PEIs serviced, and overall changes within the 

system. The variables used vary widely depending on the objectives of your analysis. 

This event will also schedule an optimize event as dictated by the user. In addition, the 

compute orders event is scheduled with no delay. 

b. PEI Arrival Event

The PEI Arrival event is “heard” from the PEIArrivalProcess and has five primary 

actions. First, it will establish the time that the PEI arrives to the production process. 

Second, every PEI will be placed in an arrival queue. In the case that the production line 

is unable to accept the PEI, the arrival queue will allow the simulation to hold the PEI(s) 

until the system can accommodate them. This event will also ensure any change in the 

arrival queue is tracked for statistical purposes. Finally, the PEI arrival event will check 



46 

to see if there are enough bays available. If bays are available, the start disassembly event 

is scheduled. Otherwise, the PEI will remain in the arrival queue. 

c. Start Disassembly Event

The Start Disassembly event has a total of four functions. The first function is to 

update the number of available bays as the result of a new PEI entering the production 

line. Change in the number of available bays is tracked. The second function is to remove 

the PEI from the arrival queue. The change occurring within the arrival queue is tracked. 

Third, the event will determine how long the PEI is in the arrival queue in order to track 

this statistic. Finally, the start disassembly will schedule the finish disassembly event to 

occur some to be determined time in the future. This will include passing the PEI to the 

next event. 

d. Finish Disassembly Event

The Finish Disassembly event has many functions. Its primary function is to 

adjust the main inventory for each completed PEI. This is a two-phase process. First, the 

parts required for each PEI are added to the master parts inventory. Every PEI arrives 

with zero parts so no action is required on the part of the individual PEI inventory. 

Second, the condition of the PEI (i.e., unserviceable quantities of each NIIN) must be 

determined. The main inventory will be adjusted accordingly. The change in the new 

inventory is tracked. After the main inventory is adjusted, the PEI is added to the 

assembly queue. Change to the assembly queue state variable is tracked. At this point, the 

Finish Disassembly event will check to see if all parts are available as well as ensure PEIs 

still exist in the queue. If both requirements are met, the start assembly event is scheduled 

with no delay. Otherwise, the PEI will remain in the queue until the conditions are met.  

e. Start Assembly Event

The Start Assembly event removes the PEI from the assembly queue and 

determines the PEIs assembly queue delay time. Changes in the assembly queue and PEI 

assembly queue delay time are tracked. The Start Assembly event then schedules the 

Finish Assembly event to occur when the PEI is reassembled. Scheduling the Finish 
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Assembly event (see below) requires the PEI to be passed along by the Start assembly 

event. It must then remove the parts required for the PEI to be reassembled. This will 

ensure the main inventory does not fall into a negative balance in the case where multiple 

PEIs are being processed at the same time. Finally, changes in the main inventory are 

tracked for statistical purposes. 

f. Finish Assembly Event

The Finish Assembly event has six state transitions. Because the simulation is 

currently designed to add all parts at the same time, this event will restore the PEIs 

internal inventory. The bay being used by the PEI is then released for another PEI to use 

and the associated change to the bay is tracked. The total time the PEI has been in the 

system is recorded. The event then schedules the PEI complete event, passing the PEI. 

The event will then check to see if any PEIs are waiting in the arrival queue. If so, a Start 

Disassembly event is immediately scheduled so that awaiting PEIs can be processed. One 

issue that may arise for PEIs waiting to be processed in assembly queue is that there may 

be a large influx of parts arriving thereby facilitating more than one PEI being processed 

for assembly. In order to remedy this issue, the final action is to check and see if there are 

enough parts to accommodate additional PEIs being assembled. If additional PEIs are 

waiting in the assembly queue and sufficient parts are available, the Finish Assembly 

event schedules an additional Finish Assembly event. 

g. PEI Complete Event

The PEI Complete event simply out-processes the PEI from the production 

process, and adds the PEI to the PEI completed list. This event can be modified for future 

iterations of the model to accommodate additional post production actions.  

h. Optimize Event

The Optimize event’s primary action is to run CPIOM using the current 

inventory. In the context of this DES, the CPIOM must know the initial inventory. Prior 

to the DES start, the initial inventory is designated by the user provided input. Once the 

simulation begins the inventory is constantly in flux. As a result, the CPIOM must use the 
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current main inventory of the process at the time of the Optimize event as the new initial 

inventory. It is important to clarify that the initial inventory is the safety stock that exists. 

Recall each PEI is essentially stripped of its parts. These parts are then placed in the main 

inventory. The safety stock is calculated by multiplying the total number of vehicles 

currently in the production process (i.e., uncompleted vehicles) by the parts required for 

each PEI and subtracting this from the main inventory. Any remaining parts reflect the 

safety stock and therefore the initial inventory to be used by CPIOM. Once the CPIOM 

has been run, the Optimize event will then schedule the next optimize event to occur 

according to the re-optimize parameter. In addition, the Optimize event will schedule the 

compute orders event and another arrival event. 

i. Arrival Event

No actions occur in relation to the PEI production process. Recall that the PEI 

arrival process is listening for this event. When this event is scheduled, the PEI arrival 

process begins the process of bringing additional PEIs into the system.   

j. Compute Orders Event

The primary purpose of the Compute Orders event is to ensure the accuracy of 

orders. One of the issues that can occur within the simulation is that previous orders may 

still be pending. Because the CPIOM does not consider pending orders, the compute 

orders event will screen all pending orders in order to ensure the same parts are not being 

double ordered. If there are instances in which the parts required to be ordered are 

actually less than what is currently on order, the orders will not be cancelled. This is 

assuming variations between the optimization model and the simulation will even out 

over time. In cases where the parts required exceeds the total quantity on order, only the 

difference between the quantity of parts on order and quantity of parts needing to be 

ordered would be put on order. Another feature of the compute orders event is that it will 

only process NIINs to be ordered if historical order data exists. In other words, the DES 

cannot process an order unless it can determine a lead time for the NIIN being ordered. 

Chapter IV will discuss the problem of having insufficient ordering data in more detail. 
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For each NIIN that requires an order, an order parts event is scheduled in which the NIIN 

and quantity to be ordered is passed along.   

k. Order Parts Event 

The Order Parts event simulates the actual “ordering” of parts. Critical to this 

function is determining the lead time of each NIIN to be ordered. This is accomplished 

through the use of historical order data and will be explained later on within this chapter. 

Once the lead time is determined, the parts arrival event is scheduled according to the 

assigned lead time. Again, the NIIN and quantity ordered is included when scheduling 

the parts arrival event. 

l. Parts Arrival Event 

The Parts Arrival event processes the parts when they arrive, updating the main 

inventory by adding the parts and tracking the change in inventory. The Parts Arrival 

event will then immediately notify the production line that new parts have arrived by 

scheduling a start assembly event.  

D. PROGRAMMING IMPLEMENTATION 

This section will provide a brief explanation of the various programming classes 

used to execute the simulation as well as critical components of the code. In addition, the 

source code will contain annotations throughout explaining in more detail the 

methodology used. The source code can be obtained by contacting Modeling Virtual 

Environments and Simulation (MOVES) at the Naval Postgraduate School. 

1. Order Management Tool Data Entry 

Data entry of required OMT input data is done via Microsoft Excel. For the 

current version of this OMT, the Excel workbook consists of five worksheets. The first 

sheet provides the NIINs being analyzed. For each NIIN, the 13 digit identification 

number, required quantity for each PEI, and initial quantity on hand is provided. The 

second sheet includes the condition history for a particular PEI. The sheet includes a 

listing of each PEI serial number and a tally of unserviceable parts for each NIIN. The 
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third worksheet provides the order history. This includes the original order date and the 

arrival date for every NIIN ordered. The fourth worksheet provides the unit price of each 

NIIN. The fifth worksheet allows the user define the OMT parameters. This includes the 

safety-stock budget, number of PEIs entering the system, number of available work-bays, 

simulation time, optimization frequency, steady state time, and number of simulation 

runs. For the current OMT version, a new set of PEIs will enter the system each time an 

optimization occurs. 

2. Simulation Time 

Simulation time is in working days. One working day represents eight hours. 

While not important for the current system represented, the hours will be critical when 

modeling the system in more detail. Because the simulation does not stop running, one 

full quarter works out to be roughly sixty-six working days or 264 working days for a 

year. This calculation takes into consideration weekends and holidays. The program 

allows the user to input the simulation time for three primary variables namely total 

simulation time, re-optimization time, and steady state time. The re-optimization time 

establishes the frequency at which the simulation will run CPIOM. The steady state time 

is the time in which the user wants the simulation to start compiling statistical 

information. This allows the user to determine the steady state of the simulation, as 

explained in Chapter IV.  

3. Java Classes 

In order to more easily construct and make future modifications to the program, it 

is important to divide the program into classes. Classes are simply functional components 

or building blocks of a program. This “piece-meal” approach allows increased flexibility 

when developing future iterations of the program.   

a. Input Data Processor Class 

This class is responsible for processing all spreadsheet data for use by CPIOM 

and the DES. The class accomplishes this by systematically assigning relevant data to a 

series of reference databases called maps. The simulation references these maps for the 
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duration of the simulation. Processing of the data must occur in a specific order. As a 

result, modifications to the data entry spreadsheet will result in errors.   For example, the 

DES must reference the required parts first. Without knowing this basic information, the 

DES will not be able to carry out future logic.   

b. Comma Separated Value (.csv) File Creator Class 

CPIOM requires certain input files to be in comma separated value (csv) format, 

and this class is responsible for generating those files. There are eight .csv files required 

of CPIOM. With exception of the NIN_data.csv file, all of these files generate once prior 

to the simulation starting. The NIN_data.csv file must update information about the initial 

quantities of new parts each time prior to the program re-optimizing. This class initiates 

the required calculations for determining the initial-on hand inventory for each NIIN.   

These calculations include projecting required parts for PEIs pending disassembly while 

taking into account on hand new and used inventories as well as current parts orders. The 

files that need to be produced initially include the following: 

NIN.csv is a listing of all the NIINs being ordered. 

NIN_chance.csv is currently not used. 

NIN_data.csv this contains important info concerning safety stock cost. 

NIN_histogram.csv contains distribution of unserviceable parts. 

V.csv lists the vehicle type(s). 

V_data.csv provides number of vehicles. 

V_NIN.csv provides the required parts per NIIN and PEI type. 

c. Inventory Management Class 

As the name implies, this class keeps track of new and used parts inventories. 

d. Optimizer Class 

This class is the critical link between the DES and GAMS. The Optimizer Class 

ensures all required directories exists and executes the GAMS program to run CPIOM. 
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The GAMS program correspondingly outputs the resulting files into the proper directory 

for later use by the DES. 

e. Order Management Class 

This class reads the recommended orders for each NIIN from the output file 

generated by CPIOM. The DES correspondingly places this data into a map for future 

use.    

f. Lead-Time Calculator Class 

This class works in conjunction with the data Input Data Processor Class. The 

purpose is to produce a map of histograms for lead times of each NIIN. The Lead-Time 

Selector Class explained next will use this map of histograms. 

g. Lead-Time Selector Class 

When ordering parts within the parts order event, the Lead-Time Selector Class 

will determine what the lead-time is. Lead-time is determined by randomly selecting 

from the data provided by each NIIN lead-time histogram.  

h. PEI Class 

The PEI Class defines the specific attributes of each individual entity entering the 

system. The DES in its current state contains a map attribute composed of the parts 

inventory. Simulation of a more detailed system model will require adding parts at 

different times. Having an inventory attribute will allow the DES to keep track of specific 

parts contained in an individual entity and thereby facilitating various events within the 

disassembly and assembly phases. While not currently used, each PEI also has an 

attribute reflecting how long it is sitting in a particular queue. Future iterations of the 

DES may also include using different PEIs. This will require an entity identifier attribute. 

Additional PEI variations within a single DES will inevitably result in creating additional 

classes focused on those specific PEI types.  
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i. Arrival Process Class

The Arrival Process Class tracks the number of entities entering the system and 

controls the flow and frequency of arriving entities.    

j. PEI Arrival Process Class

PEI Arrival Process Class is an extension of the Arrival Process Class. This class 

executes the logic of the PEI Arrival Process Event Graph Figure 12. As each entity 

arrives to the system, this class will establish the attributes of each individual entity. The 

entities for this DES are the individual PEIs as defined by the PEI Class. This class will 

establish a PEIs individual parts inventory. A PEI arrives with all parts available whether 

they are serviceable or not. As a result, The PEI Arrival Process Class will assign each 

PEI a full inventory according to the user input. 

k. PEI Production Process Class

This PEI Production Process Class contains the core logic of the DES. This class 

executes the logic of the Production Process Event Graph Figure 13.  

l. PEI Condition Selector Class

Each individual PEI will arrive to the system in a certain condition. The PEI 

Condition Selector Class will determine the condition of each PEI. This occurs after the 

disassembly process for each PEI. 

m. NIIN Availability Check Class

The sole purpose of the NIIN Availability Check Class is to ensure that parts are 

available in the master parts inventory. If a particular NIIN is not available, this class will 

prevent the PEI from entering the assembly process.  

n. Simkit Chart Factory Class

This class creates the various histogram charts resulting from the DES. This is 

made possible using the open-source jfree library [4]. 
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o. Histogram Class 

The Histogram Class generates the various histograms within the simulation using 

the SimpleStatsTally class within SimKit’s statistical library. The histograms enable the 

generation of the NIN_histogram.csv file and all output graphs.   

p. Run PEI Production Process Class  

This is the main class used to run the DES. The class initiates the required classes 

enabling the DES to execute. This includes creating an InputDataProcessor variable and 

ensuring only relevant data is available. Other variables instantiated include an 

InventoryManagement, PartsConsumption, and LeadTimeSelector variable. In addition, 

this class instantiates all required variables necessary for outputting statistical data into 

visual form via histogram charts. Lastly, the RunPEIProductionProcess Class tracks and 

initiates simulation repetitions. 

4. OMT Statistical Tracking 

SimKit allows for statistical information to be derived using built-in statistical 

libraries. Two functions derived from these libraries and used within the OMT include the 

simpleStatsTimeVarying and simpleStatsTally functions. The simpleStatsTimeVarying 

function is used when time is a dependent variable, as is the case in determining utilization 

rates. The simpleStatsTally function is used when time is not a dependent variable, as is the 

case when determining production rates. The main role of these functions are to keep a tally 

of each state transition as outlined in Chapter III. This is achieved using a SimKit method 

designed to pass state variable information about a state transition into the respective 

function. As a result, the functions keep a running tally of all state variables within the 

simulation allowing for statistical analysis.     
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IV. TESTING AND ANALYSIS

This chapter discusses the analysis of MDMC-provided data, the process used to 

verify the OMT, and finally demonstrates the basic OMT statistical utility. It will also 

provide the methodology for program verification and key findings resulting from the 

verification process. The demonstration portion of this chapter will provide a small 

sampling of the DES program utility in regards to statistical output.  

A. DATA ANALYSIS AND VALIDATION 

An analysis of MDMC data was conducted prior to building the OMT program. 

This analysis provided important insights because it helped to define how the program 

processes the data. From this analysis came two key findings. First, individual NIINs 

cannot be considered as independent variables. Second, the order history data provided 

by MDMC proved to be statistically insignificant for the parts requiring analysis. 

1. Unserviceable Parts Distribution

As mentioned earlier, a key finding found when researching the distribution of 

unserviceable parts is that parts cannot be treated independently. Using historical data to 

look at the distribution of unserviceable parts for six NIINs associated with the 

Amphibious Assault Vehicle (AAV), it is determined that for certain parts a dependent 

relationship exists [1]. For example, the probability of an AAV requiring NIIN 

015421278 (torsion bar type 1 of 4) using a binomial distribution is 17.7 percent. As 

shown in Figure 14, the probability distribution of this NIIN for 12 vehicles (36 parts) 

can be approximated by a normal distribution. This assumes independent failures. 

However, when plotting the data for 96 vehicles a very different distribution is displayed, 

as seen in Figure 15. In fact, Figure 15 shows this relationship occurs for other torsion 

bars as well. This implies that part failures cannot be assumed independent of each other 

(both failures for a given part and failures for two different parts). For two AAVs, Figure 

16 shows the difference between an independent relationship and a dependent

relationship for NIIN 015421278. Two dependencies exist. First, for a given part there 

are multiple failures. CIPOM considers this using the convolution technique explained in 
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Appendix A. The second dependency is for multiple parts (among parts). CIPOM ignores 

this situation, as it is too difficult to convolve within the optimization. The OMT uses a 

bootstrapping technique in order to determine the proper probability distribution for part 

failures [26]. This is done by randomly selecting a PEI from historical data.  

Figure 14.  The probability distribution of NIIN 015421278 for 12 vehicles (36 

parts) is approximately normal when using a binomial distribution. 

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine 

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014. 

Figure 15.  Distribution based on actual data for four different torsion bars. 

Histograms indicate part failures for torsion bars are not 

independent. If one torsion bar is in serviceable condition, then all 

torsion bars are likely serviceable. The converse is true for an 

unserviceable torsion bar. 

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine 

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014. 
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Figure 16.  Graph shows the difference between an independent relationship and 

a dependent relationship for NIIN 015421278. 

Source: [1] J. Salmeron, A. Buss, T. Curling and M. Kress, “Plant utilization at Marine 

Corps Logistics Command,” Naval Postgraduate School, Monterey, 2014. 

2. Order History Analysis

Order history analysis of selected NIINs found MDMC provided order history 

data to be statistically insignificant. The provided order history data includes 178,198 

orders going back two years. Of the 18 NIINs requiring analysis, only nine NIINs had 

sufficient associated data in order to allow for statistically significant estimation of 

arrivals. Associated data includes NIIN price, deficiency for NIIN, and at least one order 

per NIIN. For this analysis, a Java program was created to filter parts order data and 

output as histograms. The histograms show for each NIIN the number of order 

occurrences by lead-time. Of the nine NIINs having sufficient associated data, the 

maximum sampling size that occurred is 27, as shown in Figure 17. The figure shows that 

over 65 percent of parts ordered appear to have been immediately available when 

ordered. However, orders took from 120 to 600 days to arrive when the parts were not 

available. Without a larger sampling size and normal distribution of parts order history, 

these data are statistically insignificant. An investigation of the validity of the MDMC 

provided data was not conducted. It is possible that parts were procured outside of the 

system through various methods. Because of this finding, the primary objective of this 
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thesis is to demonstrate a proof of concept. For MDMC to use the OMT for future 

analytical research, it is critical to use accurate and statistically significant data. 

Nonetheless, important insights as to how the OMT can assist MDMC will be explained 

in future sections. 

Figure 17.  Order analysis from MDMC provided data. This figure provides a 

snapshot of the order history for a required NIIN. 

B. PROGRAM VERIFICATION 

The goal of the verification process is to ensure the DES program functions as 

programmed. As discussed earlier, this is a critical step in ensuring the simulation and all 

of its components can be successfully validated. If the program is not verified functional, 

it cannot be validated against the real world process. It is important to note that the 

functionality of the simulation was continuously verified throughout the development 

process. By the time the final component of the program is developed, there were very 

few to zero unknown discrepancies. Only unresolved discrepancies will be mentioned, all 
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of which had to do with the data rather than the model’s functionality. These 

discrepancies as well as the key findings affecting the model development will be 

explained over the next section. This will include discussing unserviceable parts 

distribution, unserviceable parts distribution csv file, negative part balances, and large 

parts requirements.  

1. Unserviceable Parts Distribution CSV File 

The OMT processes NIINs in the order received when generating the 

NIN_histogram.csv file. While negligible, the order of NIINs within the.csv file does 

matter. This is indicated when running CPIOM with NIINs placed in different orders 

within the .csv file. An explanation for why this exists is unknown, but it is nonetheless a 

consideration to take into account for future work. This is only relevant to CPIOM. 

2. CPIOM Failures for Large NIIN Orders and PEI Quantities  

Exceeding established parameters within the CPIOM will result in a failed 

solution and subsequent DES failure. If a failure occurs, review the input data and adjust 

the CPIOM as necessary. During testing, two failures occurred when running the OMT. 

However, failures for other reasons may occur as input data sets expand. The two failures 

encountered during our testing were the result of parameters being exceeded for the 

maximum number of vehicles (nK) and total number of possible orders of a given NIIN 

(H) in any run. Increases to the nK and H values allowed for successful calculation.  

3. Elimination of Analyzed NIIN for Insufficient Data  

For NIINs requiring analysis, the OMT will automatically eliminate NIINs for 

which insufficient data are available. This will occur when the NIIN does not have an 

associated order history, condition history, unit price, or required quantity for a PEI. If 

the NIINs requiring analysis are missing within the optimization output, check to see if 

information is missing for that part.  
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4. Future Negative Parts Balances 

When running the simulation, there are times when the initial parts balance is 

negative. This is normal. On occasion, CPIOM’s recommended quantity of parts ordered 

falls short of expectations. This has to do with the probabilistic nature of the modeled 

system. For example, there are situations where consumption of a particular NIIN is 

abnormally high for the order quantity. This results in initial quantities being negative. 

Recall that the CSV File Creator Class is responsible for calculating the correct initial 

parts balance.  

C. CPIOM AND DES INTERFACE VALIDATION 

Using the original baseline test case discussed in chapter two, the DES program 

verified that the CPIOM was interfacing properly with the DES. This was accomplished 

by stopping the simulation in stream and running the CPIOM independently using the 

same input variables used within the DES program, namely the current inventory. If the 

independent CPIOM run matched up with the DES program CPIOM run, the interface 

was confirmed to be working properly.   

D. SCENARIO 

With the OMT verified, an arbitrary sample scenario was used to demonstrate the 

utility of the OMT. Key input variables for this scenario are found in Table 3. The 

scenario is designed to handle only one vehicle type. The vehicle type for this scenario is 

the AAV. This scenario uses a triangle distribution for assembly and disassembly times 

centered on 3 weeks and 7 weeks respectively for a total mean processing time of 10 

weeks per vehicle. This equates to a total mean value of fifty work days assuming there 

are no modifications to the production schedule. A total of six NIINs will be used in this 

scenario. NIIN lead time distributions are generic and range from 1 day to 6 months. The 

lead times are derived as discussed in the Lead Time Selector Class section. The 

conditions of individual vehicles are generated using fiscal year 2012 and 2013 data for a 

total of 96 AAV. The scenario is set up to process a total of 12 AAVs per quarter for one 

full year. Each time new vehicles arrive into the system, parts will be ordered according 

to the CPIOM output. The vehicles will arrive in bulk (i.e., there will be no delay from 
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one vehicle arriving to the next). The simulation will conclude at the end of the 

simulation year. The production plant is capable of processing 12 vehicles at a time. 

There are no limitations in regards to available employees at this time.   

Table 3.   This table reflects the key scenario input variables used for the 

OMT demonstration.  

Variable  Value 

Optimization Period 3 months 

Safety-Stock Budget $50,000 

Simulation Time Period 1 year 

Total NIIN types 6 

Total AAVs Per Optimization Period 12 

Total Work-Bays Available 12 

Assembly Time Per AAV  35 work days (ranges from 30–42 days) 

Disassembly Time Per AAV 15 work days (ranges from 13–17 days) 

 

E. STATISTICAL OUTPUT 

The primary focus of this particular simulation run is aimed at determining the 

overall effect of the CPIOM output on plant production effectiveness and efficiency. 

There are a total of five specific metrics being produced by this demonstration. The first 

four are measures of performance showing how well the plant utilizes its resources and 

where inefficiencies may exist. This includes the average delay a PEI incurs prior to 

being disassembled and reassembled, the total average time a PEI is in the system, and 

the average utilization rate of the plants assembly bays. The fifth metric, production rate, 

is the bottom line of how well the plant achieves its production mission. For this 

demonstration, the program is set up to run the one-year scenario a total of one thousand 

repetitions.   

1. Simulation Steady State  

Prior to running a scenario for analysis, it is important to establish the 

simulation’s steady state through statistical analysis. Since the system being modeled 

does not start from scratch, the simulation needs to “warm up” in order to remove any 

bias associated with the (somewhat arbitrary) initial state. As in the real world, there is 
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the possibility of previously existing PEIs and NIIN orders existing at the beginning of 

any given year. In order to determine a steady state, the simulation will run multiple 

iterations until reaching a steady state. For this scenario, the first iteration will involve 

running the scenario previously explained for one year. The second iteration will run the 

simulation for a total period of two years with only the second year’s statistical data 

recorded. The third iteration will run the scenario for a period of three years with only the 

third year’s statistical data recorded.  Subsequent iterations will follow this pattern until a 

steady state is achieved. Determination of when the steady state is achieved is 

accomplished by comparing the statistical data for the production rate variable from one 

iteration to the next. If no significant difference exists, then the assumption is that a 

steady state has been achieved. The results of the iteration achieving a steady state are 

used for further examination of the system being analyzed. Figure 18 shows the 

comparative analysis of five simulation iterations. The steady state is not achieved until 

the fourth year of simulation. 

Figure 18.  Steady state analysis for the scenario required the simulation to run 

for four years before reaching a steady state. 
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2. Average PEI Delay in Arrival Queue

All PEIs will arrive in the arrival queue at the same time. If a work bay is 

available, the PEI will immediately fill the bay and no delay in the arrival queue is 

incurred. Figure 19 reflects a relatively small delay in the arrival queue, averaging about 

seven workdays for 13.5 percent of the simulation runs. In rare instances, delays of up to 

27 workdays occur. However, over 50 percent of simulation runs show delays ranging 

between three to eleven workdays. One important note to make about this metric is that it 

does not factor in the delay incurred upon the simulation ending. The delay is only 

calculated at the time the PEI leaves the queue. This also applies to the assembly queue 

delay metric explained next. As a result, the actual delay is possibly slightly higher than 

what is actually being captured by the DES. Nonetheless, the general idea of what may 

happen can be deduced. 

Figure 19.  Simulation results reflect a relatively small PEI delay in the arrival 

queue. The average delay is about seven work days for 13.5 percent of 

the simulation runs. In rare instances, delays of up to 27 workdays 

occur. 
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3. Average PEI Delay in Assembly Queue

Once the PEI has been completely disassembled, the PEI is placed into an 

assembly queue until it can be reassembled. If parts are available to reassemble the PEI, it 

will immediately enter the assembly process and no delay in the assembly queue is 

incurred. Figure 20 shows about 45 percent of simulation runs having an average delay 

within the assembly queue ranging from seven to ten workdays. The delay existing within 

the assembly queue is purely the result of parts not being available. In instances where 

severe parts deficiencies exist, this will most likely have an effect on arrival queue delay. 

Seeing that there are sufficient bays available and the frequency of arriving parts is not 

severely deficient, delays existing within the arrival queue exist due to a backlog in the 

assembly queue. Because of the optimization component within the DES, the simulation 

is able to optimally adjust to the stochastic nature of arriving parts. Again, the delay 

represented in Figures 19 and 20 is most likely higher due to the assembly queue delay of 

existing PEIs not being captured at the end of the simulation run. In other words, this is a 

conservative representation of delay incurred. 

Figure 20.  PEI average delay within the assembly Queue. The simulation results 

in about 45 percent of simulation runs having an average delay ranging 

from seven to ten workdays. 
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4. Average PEI Time in System

The overarching metric covering delay of production time is captured by the 

average PEI time in system metric. This statistic is particularly useful when looking at the 

system from a holistic standpoint. While inefficiencies may exist within certain locations 

of the process, they may be acceptable from a holistic perspective. There may be 

situations where it may not be feasible to reduce the delay in a certain location. It shows 

the combined effect of delay and production time. Figure 21 reflects no observations of 

PEIs incurring zero delays in production time. The majority of runs reflect average PEI 

total time in system between 61 to 72 days. In this scenario, managers can expect overall 

production to be delayed by 12 to 22 days in 57 percent of simulation runs. This would be 

an important point to consider when evaluating the utilization of human resources. The 

current simulation model only considers work bays. Future simulations may include 

adding employees as a state variable in order to track worker downtime. An example of 

this is seen in the next section when discussing production line utilization rates. 

Figure 21.  Average total time of a PEI in the system. Managers can expect 

overall production to be delayed by 12 to 22 days in 57 percent of 

simulation runs. Within the scenario, it takes 50 work days to 

produce a PEI on time. 
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5. PEI Production Line Average Utilization Rate

Showing the utilization of production resources may be a useful indicator of 

where inefficiencies may exist within the process. If even a small deficiency exists, it 

may allow for critical adjustment to the production process in order to cover shortfalls in 

other areas. For this simulation, the average utilization rate for the PEI production line 

reflects the percentage of bays being used throughout the simulation. From Figure 22, the 

average utilization rate for the production line is 100 percent during 14 percent of all 

simulation runs. 100 percent of the runs have a bay utilization rate greater than 

90 percent. The situations where lower utilization rates exist within this DES construct is 

the result of too many bays existing in the first place and/or PEIs completed ahead of 

schedule. Because of these two situations, bay vacancies are created thereby reducing the 

utilization rate. When analyzing the utilization rate, it is important to take overall delay 

within the system into consideration. The combination of high utilization rates and low 

delay rates indicate the system is running optimally. Assuming few parts order delays, a 

high utilization rate with a high delay rate may point to inefficiencies within the system. 

In this case, we see utilization rates between 90 to 100 percent and relatively low delay 

rates of 12–22 workdays. These metrics can be compared to established parameters for 

determining estimated system efficiency and effectiveness, if such exist.  
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Figure 22.  Work-bay utilization rate. During 14 percent of all simulation runs, 

the average utilization rate for the production line is 100 percent. All 

runs have a bay utilization rate greater 99 percent. 

6. PEI Production Rate

The production rate is viewed as the primary measure of effectiveness. This 

metric is the percentage of total PEIs produced for PEIs entering the production process 

at the end of each simulation run. While the optimization model will provide the best 

combination of NIINs and associated quantities to order, it will not portray the variability 

in production output as a simulation can. From Figure 19, the simulation reflects over 

90 percent of runs will fall short of the full production rate even with optimal order 

quantities being used. As discussed within the steady state analysis, the mean production 

rate achieved over one thousand simulation runs is 97.2 percent. 
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Figure 23.  Histogram for production rate. The simulation reflects over 

90 percent of runs will fall short of the full production rate. 

7. Other Metrics

Several state variables could potentially be analyzed depending on the objectives 

of the organization. Employee utilization is one example that we mentioned briefly. Other 

variables include inventory levels, stock out costs, safety stock costs, and overall 

expenditure costs. The complexity of the system being modeled and simulated increases 

the complexity of potential analysis. It is ultimately up to the organization to identify the 

degree of complexity to model in the system and associated metrics.   



 69 

V. CONCLUSIONS, RECOMMENDATIONS, 

AND FUTURE WORK 

Several key insights and observations can be derived from the work provided by 

this thesis. In regards to the primary purpose of demonstrating to MDMC the utility of 

combining optimization and DES, there are two main observations. First, data input 

validation is, not surprisingly, critical to the effective use of any analysis tool that utilizes 

optimization and simulation techniques. Without quality historical data to fuel CPIOM 

and the DES, the outputs of the simulation will result in an inaccurate representation of 

the system. The second observation is that a joint optimization and DES construct 

provides valuable information when analyzing a complex stochastic system. In general, 

the use of optimization modeling is fundamental when dealing with systems involving 

many decision variables. The production lines at MDMC involve thousands of variables 

and thereby make them an ideal candidate for applying optimization. Because of the wide 

range of complexity and variability existing within the MDMC, DES is an essential 

element of the optimization process.  

Throughout the development of the OMT program, a building approach has been 

used, which allows the program to be easily modified in the future. In particular, CPIOM 

and the DES are completely independent within the coding structure. The only element 

connecting the two components are the data inputs and outputs. This is important because 

it allows developers to make changes in each components code independently. Of course, 

if changes result in modifications to output or input structure, this would result in a 

corresponding coding adjustment. The building block approach to the design of the DES 

allows the developer to increase model complexity incrementally. This is important since 

the organization will want to have more than just a single simple component of their 

system. This is especially true when parts and employees can be cross-decked among 

multiple platforms. For example, if a particular part is utilized by both a tank and a truck 

or a painter is required for all PEI types. 

This thesis has demonstrated the OMTs practical utility. This includes providing a 

user with output metrics for delays within the system, utilization rate for work-bays, and 
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overall system production rates. The primary OMT output for the scenario in this thesis is 

that over 90 percent of simulation runs will fall short of the full production rate. 

Additional analysis reveals total delays of 12 to 22 days in 57 percent of simulation runs 

and at least a 90 percent work-bay utilization rate among all runs. Using information such 

as this provides insights into system efficiency and effectiveness. This in turn can be used 

to develop organizational policy. Keep in mind that this demonstration uses a fictional 

data set for NIIN order history and simulates a basic system. Future refinements and 

complexities can be added depending on organizational analytical and mission objectives. 

As the program is developed and refined further, the addition of new components 

inevitably results in the ability to analyze additional variables. The DES program is 

currently programmed to analyze only five output variables of the system: average PEI 

delay in arrival queue, average PEI delay in assembly queue, average PEI time in system, 

average work bay utilization rate, and average production rate. Of course, many more 

variables can be analyzed depending on the model’s complexity. For MDMC in 

particular, financial accounting is an important consideration not currently analyzed 

within the simulation. These financial variables include overall safety stock costs, stock 

out costs, and budget. These same variables can be further broken down to the costs 

associated with individual NIINs. Other variables to consider would be employee 

utilization (if employees were explicitly added to the model), inventory stock levels, and 

PEI production rates by PEI type. In summary, the effective combined use of DES and 

optimization modeling provides a potentially powerful resource for analyzing many 

variables within a complex system.    
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APPENDIX. CPIOM MATHEMATICAL FORMULATION 

The below information is from [1]. This appendix describes the formulation of the 

CPIOM model. After the formulation, the functionality of each constraint involved is 

described.  

A. INPUT DATA: INDICES, INDEX SETS AND PARAMETERS 

i I , critical parts, also known as NINs 

v V , vehicle types 

iv V , vehicle type that has part i 

V

vn , number of vehicles type v 

I

in , number of parts i in each iv  vehicle 

in , total number of parts i. Calculated as 
i

V I

v i

v V

n n




b , budget for safety stock level 

SO

ic , cost of each stockout of part i 

SS

ic , cost of each part i in safety stock (unused inventory) 

0

iq , initial stock of part i 

0q , one if the initial stock (
0q  vector) counts against safety stock budget, and 

zero otherwise 

1. Approximation of probability distribution for replaceable parts

Method 1 (independent parts): Assumes all part replacements are independent, 

even for parts of the same type within the same vehicle. E.g., “a broken torsion bar in 

vehicle 1 does not affect the probability that the next torsion bar on that vehicle is also 

broken.” The formulation required is as follows: 
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ip , probability that each part i needs to be replaced. This probability is 

estimated based on historical data as follows:  

total parts of type i replaced / total parts of type i 

iD , random variable for demand (# of parts) i that need to be replaced. 

Binomial( , )i i iD n p  

ik K , index for probability levels for part i, {0,1,2,..., }i iK n (see below) 

,ik ikd p , demand for level k, and probability for that level, for item i:  

,ik id k k K    

Pr{ } (1 ) ,ii n kk k

ik i ik i i i

n
p D d p p k K

k


     

 
 

Remark: We are modeling ,ik id k k K   because the number of parts is 

small and so Binomial( , )i i iD n p . However, if the number of parts were 

too large we would have to group parts into other levels. 

 

Method 2 (partial dependence): Assumes part replacements for different part 

types within the same vehicle or for the same part type in different vehicles are 

independent. However, part replacements of the same type within a given vehicle are not 

independent. E.g., “a broken torsion bar in vehicle ‘A’ does not affect the probability that 

the vision block on vehicle ‘A’ is also broken; but, it does affect the probability that 

another torsion bar on vehicle ‘A’ is broken.” The formulation required is as follows: 

 

inp , probability that n parts of type i need to be replaced, for 1,..., I

in n . This 

probability is estimated based on historical data as follows:  

total vehicles requiring n parts of type i replaced / total number of vehicles 
V

iD , random variable for demand (# of parts) i that need to be replaced in a 

vehicle of type iv . That is:  

#historical vehicles with  replacements of 
Pr{ } , 1,...,

number of historical vehicles

V V I

in i i

n i
p D n n n    

 

iD , random variable for demand (# of parts) i that need to be replaced. 

1... V
vi

V

i i

m n

D D


  

The above convolution (sum of i.i.d. random variables) can be calculated 

using the below notation and recursive procedure: 

ik K , index for probability levels for part i, {0,1,2,..., }i iK n (see below) 
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,ik ikd p , demand for level k, and probability for that level, for item i:  

,ik id k k K    

1. Calculate 2V V V

i i iD D D  : 

2 2

,

0,...,

Pr{ } , 0...2
I
i

V V V V I

ik i ij i k j i

j k n

p D k p p k n

 

      

2. Given , 1V m

iD  , calculate , 1Vm V m V

i i iD D D  : 

, 1

,

0,...,

Pr{ } , 0...
I
i

Vm Vm V m V I

ik i ij i k j i

j k n

p D k p p k mn



 

      

3. Stop when
i

V

vm n  . Use the last probabilities generated, as follows: 

Pr{ } ,
V
iVn

ik i ik ik ip D d p k K      

Remark: If in  is large, the distribution of the above convolution may take 

a long time to calculate, and we may need to model those parts using other 

methods. 

1. Decision Variables 

iQ , quantity ordered for part i  
SO

ikZ , ancillary variable for stockout of part i   
SS

ikZ , ancillary variable for parts i in safety stock that apply to the calculation of budget 

being used 

2. Formulation 

SO SOmin
i

ik i ik

i I k K

p c Z
 

         (1.1) 

subject to:  

  
Z

ik

SO ³ d
ik

- (q
i

0 + Q
i
) "i ÎI ,k ÎK

i
      (1.2) 

SO 0 ,ik iZ i I k K          (1.3) 

0SS 0 ,q

ik i i ik iZ q Q d i I k K            (1.4) 

SS 0 ,ik iZ i I k K          (1.5) 

SS SS

i

ik i ik

i I k K

p c Z b
 

         (1.6) 

0 and integeriQ i I            (1.7) 
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The above formulation prescribes order quantities for each item in order to 

minimize expected stockouts (or their expected cost if SO 1ic  ), subject to a budget 

constraint on expected cost of safety stock. We can post-calculate 
SS

i

ik ik

i I k K

p Z
 

  as the 

expected safety stock involved in the budget constraint. If 
0

1q  , it will be the same as 

the expected safety stock. Otherwise (if 
0

0q  ) the actual expected safety stock will be 

more than the above calculation (if there was an initial stock), and can be post-calculated 

as 
0max{ ,0}

i

ik i i ik

i I k K

p q Q d
 

  . (Note that, in the last case, we include the initial stock 

in the calculation of expected safety stock, but do not include it in the calculation of the 

cost.) 

Alternative options for the objective might include minimizing expected cost of safety 

stock, subject to expected number (or cost) of stockouts not exceeding a given value, 

which can be easily formulated. 

a. Formulation of Chance Constraints 

Additional chance constraints, such as “the probability that a certain item has 3 or 

more stockouts is under 95percent can be added to the above formation. To do this, we 

add the following: 

 

Additional data 
SO+,i im p , stockout level for item i and maximum probability that a stockouts of that size 

occurs for the item. In the above example, SO+3, 1 0.95 0.05i im p      

Additional Decision Variables 
SO+

ikZ , one if the k level of demand produces a stockout for part i that exceeds the 

maximum level, 
im , and zero otherwise 

Additional Formulation 
SO+ SO( )/ | | ,ik ik i i iZ Z m K i I k K         (1.8) 
SO+ {0,1} ,ik iZ i I k K         (1.9) 

SO+ SO+

i

ik ik i

k K

p Z p i I


         (1.10) 

Note Equation (1.8) forces SO+

ikZ to become 1 when the number of stockouts for demand 

level k, i.e., SO

ikZ , exceeds 
im . Then Equation (1.10) adds up the probabilities of those 

levels, so as not to exceed SO+

ip . 
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